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Abstract

We show that the strength of non-commutativity could play a role in determining
the boundary condition of a physical problem. As a toy model, we consider
the inverse-square problem in non-commutative space. The scale invariance
of the system is explicitly broken by the scale of non-commutativity �. The
effective problem in non-commutative space is analyzed. It is shown that
despite the presence of a higher singular potential coming from the leading
term of the expansion of the potential to first order in �, it can have a self-
adjoint extension. The boundary conditions are obtained, which belong to a
1-parameter family and are related to the strength of non-commutativity.

PACS numbers: 03.65.−w, 02.40.Gh, 03.65.Ta

(Some figures in this article are in colour only in the electronic version)

The study of non-commutative spacetime [1, 2] is a fascinating subject. The expectation that
the spacetime could be non-commutative at small length scale has further accelerated research
in this direction. Due to the non-commutativity of coordinates of a plane (x, y), there exists
an uncertainty relation,

�x�y ∼ �, (1)

where � is the non-commutativity parameter. Non-commutativity of a charged particle can
arise due to the nontrivial nature of spacetime at small length scale or it may arise if the
magnetic field, subjected perpendicular to the plane, is strong enough. However, the idea
of non-commutativity of spacetime is quite old. Non-commutativity was used in the work
of Snyder in 1947 [3], although it did not get much attention at the time. In quantum
theory, non-commutativity is a key object, for example coordinate x and its conjugate p are
non-commutative:

�x�p ∼ h̄. (2)
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Even the generalized momenta Pi in the magnetic field background B do not commute:

�P1�P2 ∼ B. (3)

The coordinates of a plane behave as canonical conjugate pairs and therefore do not commute
in the presence of a strong magnetic field perpendicular to the plane.

The strength of non-commutativity, �, may have an intrinsic origin in spacetime or it may
have origin in an external magnetic field as stated previously. However, the length scale, �,
introduced in the problem due to the non-commutativity can be exploited to heal the ultraviolet
divergence of the problem under study. In a recent paper [4], we investigated the inverse-
square problem, H = p2 + αr−2, in non-commutative space in order to show how the length
scale � can be successfully used to regularize the problem. Since the inverse-square problem
does not possess any dimensional parameter to start with, it is a scale-invariant problem. It can
be understood from the transformation r → εr and t → ε2t . The parameter ε is the scaling
factor. One can check that the classical action corresponding to the Hamiltonian H is invariant
under this transformation. Note that the Hamiltonian H transforms as H → (1/ε2)H . The
Lagrangian L associated with the system also transforms in the same way, L → (1/ε2)L. It
is now obvious that the action, A = ∫

dtL, will be scale invariant under the transformation
r → εr and t → ε2t . In quantum mechanics, it has the following consequences. Let φ be an
eigenstate of the Hamiltonian H with the eigenvalue E, i.e., Hφ = Eφ, then φε = φ

(
r
ε

)
will

also be an eigenstate of the same H but with energy E
ε2 . The ground state, therefore, has no

lower bound, implying that it does not have any bound state. It is, however, known from some
physical problems, for example binding of an electron in a polar molecule [5], the near horizon
states of a black hole [6] and other [7–10] that inverse-square potential can bind particles. The
theoretical interpretation of this binding can be obtained in terms of nontrivial quantization,
which can be obtained by the von Neumann method of self-adjoint extensions.

However, once the inverse-square problem is considered in a non-commutative plane, it
looses its scale symmetry property due to the presence of dimensional parameter �. To first
order in the parameter, �, the potential V = α/r2 in the non-commutative plane becomes
more singular, but then it belongs to an interesting class of interaction Vμ = g/rμ, μ > 2,

studied in [11]. The interesting feature of the potential Vμ is that it possesses a localized state
at the threshold of energy E = 0. The state which has zero eigenvalue is usually considered as
a transition point from bound states to scattering states. But due to the nontrivial asymptotic
nature of the potential of the type Vμ, they can form bound states [12], even at E = 0. Apart
from scale symmetry, the inverse-square problem has even larger symmetry, formed by three
generators: the Hamiltonian H, the dilatation generator D and the conformal generator K. It
is called the SO(2, 1) algebra: [D,H ] = −ih̄H, [D,K] = ih̄K, [H,K] = 2ih̄D [13, 14].
We have shown that with the introduction of non-commutativity the so(2, 1) symmetry of the
system is broken explicitly and, however, in the commutative limit the exact so(2, 1) symmetry
is restored.

In the present paper, we extend our discussion of [4] further and obtain a generic boundary
condition for the zero-energy localized state. The paper is organized in the following fashion:
first, we consider the inverse-square interaction on a plane and discuss briefly how it changes
when the coordinates of the plane become non-commutative. Second, we consider the non-
commutative Hamiltonian obtained to first order in the non-commutativity parameter �. The
possible bound state spectrum is discussed in terms of generic boundary conditions. Finally,
we conclude with some discussion.

We now consider a particle, interacting with a potential V = α/r2 on a non-commutative
plane with the algebra

[x̂1, x̂2] = 2i�, [p̂1, p̂2] = 0,
[
x̂i , p̂j

] = ih̄δij . (4)

2



J. Phys. A: Math. Theor. 42 (2009) 355206 P R Giri

However, the commutative limit � → 0 takes it to the standard algebra:

[x1, x2] = 0, [p1, p2] = 0, [xi, pj ] = ih̄δij . (5)

It is useful to get a representation of the non-commutative coordinates (x̂i , p̂i) in terms of the
coordinates (xi, pi). We choose a representation,

x̂1 = x1 − �p2, x̂2 = x2 + �p1,

p̂1 = p1, p̂2 = p2, (6)

for our purpose, but other representations are also possible. The Hamiltonian on the non-
commutative plane

HNC = p̂1
2 + p̂2

2 + α/̂r2, (7)

to first order in the non-commutative parameter � can be written as

HNC = p1
2 + p2

2 + α/r2 + 2α�(x1p2 − x2p1)/r4. (8)

The presence of the potential 2α�(x1p2 − x2p1)/r4 breaks the scale invariance. We solve the
eigenvalue problem,

HNCψNC = ENCψNC, (9)

for ENC = 0 and found a bound state with angular momentum m for ξ =
√

α + m2 > 1 [4].
For large values of the non-commutative parameter, �, it is also possible to get the expectation
values of the Hamiltonian. Since the zero-energy Schrödinger equation is exactly solvable, it
is possible to ask what is the most general boundary condition in this case. To be explicit, we
consider an eigenvalue problem of the form

ĤNCψNC ≡ − r4

αm

(
p2

1 + p2
2 + α/r2) ψNC = 2�ψNC. (10)

Note that the dimensional parameter 2� has been considered as the eigenvalue for our problem.
All square-integrable solutions for different values of the parameter � correspond to the
ENC = 0 degenerate states. Even for complex values of the parameter � if the solution ψNC is
square integrable then it corresponds to the bound state with ENC = 0. Since our assumption
in (4) is that the parameter � is real, we will restrict the parameter space to be real. It can be
done if we can ensure that ĤNC is self-adjoint. From now onward the symmetric operator ĤNC

will be investigated and a suitable boundary condition will be found out, which will make the
operator self-adjoint.

Imposing a well-defined boundary condition is important for getting a physical solution.
In this paper, we exploit von Neumann’s method to analyze ĤNC. Before actually making
any symmetric extensions for the operator ĤNC, a brief discussion about the von Neumann’s
method is necessary here. Consider any symmetric operator, say B, which is for the moment
taken to be unbounded. It is possible to define a domain D(B) under which the operator B is
symmetric. One can also obtain the adjoint operator, B∗, corresponding to the operatorB. From
the symmetric condition

∫ ∞
0 φ∗(r)Bχ(r)dr = ∫ ∞

0 (B∗φ(r))∗ χ(r)dr,∀χ(r) ∈ D(B) we can
obtain the domain, D(B∗). The operator B would be self-adjoint if the two domains are same,
i.e., D(B) = D(B∗). In terms of the deficiency indices n± [15], one can have alternative
definition of self-adjointness. The deficiency indices n± are the dimension of the kernel,
Ker(i ± B∗). If n± = 0, then the operator B is essentially self-adjoint. If n+ = n− = n 
= 0,
then B is not self-adjoint but admits a self-adjoint extension. It can be characterized by n2

parameters. Different values of the parameters give rise to different physics. For, n+ 
= n−,
operator B does not have any self-adjoint extensions.

The operator ĤNC, which we are analyzing in this work, acts on the functions defined on a
Hilbert space of square-integrable functions with the domain L2[R+, rdr]. Since the solution
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of the problem (10) has a similarity with the inverse-square problem Hψ = Eψ of [7], it
would be helpful to look at the short distance and asymptotic behavior of both the solutions.
One can check that the solutions have an inverse relation to each other of the form

lim
r→0

ψNC ≡ lim
r→∞ ψ,

lim
r→∞ ψNC ≡ lim

r→0
ψ. (11)

Due to this inverse behavior of the eigenstate, we impose a nontrivial boundary condition for
our problem at r = ∞. The operator ĤNC is essentially self-adjoint for ξ 2 � 1 which has been
discussed in detail in [4]. Since any system is defined by a Hamiltonian and its corresponding
domain, in our case ĤNC for ξ 2 � 1 acts on the domain

D0 = {ψ ∈ L2(rdr), ψ(∞) = ψ ′(∞) = 0}. (12)

Note the difference that the same condition (12) was imposed for the inverse-square problem
[7] but at r → 0. Let us now investigate the operator in the interval ξ ∈ (−1, 1). In this region,
ĤNC is not essentially self-adjoint and, therefore, we need to make self-adjoint extensions of
the original domain, so that the Hamiltonian becomes self-adjoint. We discuss the case ξ 
= 0
first, and then consider the case ξ = 0 separately. The deficiency indices are 〈1, 1〉 for
ξ ∈ (−1, 1). Since the number of deficiency space solutions is the same for both types, there
exists a self-adjoint extension, characterized by a parameter, �. The domain under which
ĤNC would be self-adjoint is given by

D� = {D0 + ψ+ + ei�ψ−}. (13)

The explicit form of the deficiency space solutions ψ± are given by

ψ+ = Hξ

(√
αm

r
e−iπ/4

)
, (14)

ψ− = Hξ

(√
αm

r
e+iπ/4

)
, (15)

where Hξ is the modified Bessel function [16]. The behavior of any function, belonging to
the domain D� , near r → ∞ can be found from the behavior of ψ+ + ei�ψ− at the asymptotic
limit. Because the domain D0 goes to zero at r → ∞, it does not contribute to the domain at
r → ∞. The asymptotic behavior of the domain is of the form

lim
r→∞

(
ψ+ + ei�ψ−

) � A+ (2r)−ξ + A− (2r)ξ , (16)

where, A± = − (αm)±ξ/2π i
sin(πξ)

cos( �
2 ± πξ

4 )

(1±ξ)
. The solution of (10) has to be matched with (16) to get the

relation of the non-commutativity parameter � with the self-adjoint extension parameter �.
We see that there is exactly one bound state with the non-commutativity, 2�, and eigenfunction,
ψNC, being of the form

2� = 1

αm

ξ

√
cos 1

4 (2� + ξπ)

cos 1
4 (2� − ξπ)

, (17)

ψNC = exp(imφ)Hξ

(√−2�αm

r

)
. (18)

In figure 1 the behavior of the parameter 2� as a function of the self-adjoint extension
parameter � has been shown for three different values of the coupling constant α and for the
fixed value of the angular momentum quantum number m. Now let us come to the case for
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Figure 1. A plot of the non-commutativity parameter 2� as a function of the self-adjoint extension
parameter � for m = 1. It corresponds to equation (17). The blue (dotted) curve corresponds
to α = −1/10, the pink (dashed) curve corresponds to α = −1/6 and the black (full) curve
corresponds to α = −1/3.
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Figure 2. A plot of equation (19). The blue (dotted) graph corresponds to α = −4 and m = 2.
The pink (dashed) graph corresponds to α = −9 and m = 3. The black (full) graph corresponds
to α = −16 and m = 4.

ξ = 0, which can be handled similarly. The non-commutativity parameter corresponding to
the bound state and the corresponding eigenstate are given by

2� = 1

αm
exp

(
π

2
cot

�

2

)
, (19)

ψNC = exp(imφ)K0

(√−2�αm

r

)
, (20)

respectively, where K0 [16] is the modified Bessel function. In figure 2, the parameter 2�

of (19) has been plotted as a function of the self-adjoint extension parameter � for three sets
of values of the pair α and m. Note that since the non-commutativity parameter � comes
out as an eigenvalue of an effective Hamiltonian it leads to quantization of �. In [17], the
non-commutativity parameter is also obtained to be quantized, although there the reason was
due to Dirac quantization condition of the monopole charge.

So far we have considered only the term which is first order in the non-commutativity
parameter �. However, it is possible to consider higher-order terms. Although the differential
equation may not be exactly solvable, the question of possible self-adjoint extensions can be
answered with the help of Wyle’s limit point-limit circle criterion [15]. It says that a potential
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V (r) of a Hamiltonian H = − d2

dr2 + V (r) is in the limit circle case at r = 0 or r = ∞ if for
some E and therefore for all E all solutions of Hψ = Eψ are square integrable at r = 0 or
r = ∞. If V (r) is not in the limit circle case then it is in the limit point case. Any operator H
can be then classified as

(i) If V (r) is in the limit circle case at both ends then 〈n+, n−〉 = 〈2, 2〉 and H admits a
4-parameter family of self-adjoint extensions.

(ii) If V (r) is in the limit circle case at one end and the limit point case at the other end then
〈n+, n−〉 = 〈1, 1〉 and H admits a 1-parameter family of self-adjoint extensions.

(iii) If V (r) is in the limit point case at both ends then 〈n+, n−〉 = 〈0, 0〉 and H is essentially
self-adjoint.

In our case, the Hamiltonian with terms higher order in non-commutativity is of the form

HNC = p2
1 + p2

2 +
α

r2
+

2α�Lz

r4

+ �2 α

r2

(
4L2

z

r4
− p2

1 − p2
2

)
+ O(�3). (21)

In the asymptotic limit r → ∞, all potential terms can be neglected compared to α
r2 term.

The two independent solutions then become ∼r±ξ , both of which are square integrable for
ξ ∈ (−1, 1), which means that HNC is in the limit circle case at r → ∞ for all order in the
non-commutativity parameter �. Since one end is in the limit circle case, the Hamiltonian
HNC belongs to either category 1 or 2 above, which implies that it has self-adjoint extensions.

We adopted a representation (6) where the Hamiltonian takes a simple symmetric form,
and therefore the eigenvalue equation is exactly solvable. However, one can consider different
representations but the result would be the same. For example, consider

x̂1 = x1 − 2�p2, x̂2 = x2,

p̂1 = p1, p̂2 = p2, (22)

or

x̂1 = x1, x̂2 = x2 + 2�p1,

p̂1 = p1, p̂2 = p2. (23)

Both the representations are compatible with the algebra (4). One can check taking the
representation (22) that to first order in non-commutativity HNC is

HNC = p2
1 + p2

2 +
α

r2
+

4α�x1p2

r4
. (24)

Note that (7) is the symmetrized version of the operator (24). Similarly, taking the other
representation (23) one will get a potential term − 4α�x2p1

r4 , which can be symmetrized to the
desired potential term of (8).

Although we used a specific representation in our calculation which enables us to map the
non-commutative quantum-mechanical problem to the plane where coordinates commute, it
can be shown that this approach is equivalent to working in the non-commutative plane itself
[18]. In the non-commutative plane, two functions ψ(x) and χ(x) do not commute due to a
product known as Moyal product or �-product of the form

ψ(x) � χ(x) = ei�ij ∂
(1)
i ∂

(2)
j ψ(y)χ(z)|y=z=x. (25)

The Schrödinger equation in this plane can be written by replacing all ordinary product by the
�-product as

i
∂ψ(x; t)

∂t
=

(
p2

2m
+ V (x)

)
� ψ(x; t). (26)

6
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Note that the kinetic term is not affected by the �-product, only the potential term is affected by
the �-product. One can use Bopp’s shift to get the effect of non-commutativity. For detailed
discussion, see [18] and the references therein. The coordinates xi of the potential V (x) are
shifted by xi − �εijpj , where εij is the antisymmetric tensor taking values ε12 = −ε21 = 1.
The Schrödinger equation (26) then is equivalent to

i
∂ψ(x; t)

∂t
=

(
p2

2m
+ V (xi − �εijpj )

)
ψ(x; t), (27)

where now the coordinates are commutative among themselves. Note that the representation
(6) we used in our analysis is nothing but Bopp’s shift.

Finally, to first order in non-commutativity, �, the inverse-square problem has been
discussed as a toy model to illustrate the connection of the boundary conditions with the
strength of non-commutativity. The exact solvability of the ENC = 0 eigenstate has been
exploited to get a generic boundary condition by making a suitable self-adjoint extensions for
the problem. We treated the non-commutativity � as the eigenvalue and obtained a generic
boundary conditions under which the spectra are restricted to the subspace of real axis.
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